

Certification of Analysis

labservices@ionizationlabs.com 737.231.0772

RAZAD Enterprises LLC Plano, TX 75024

Sample Information

Test Date:	Nov 30, 2020, 11:39 AM
Sample / Strain Name:	ZAR 3000 mg FS TB
Lot # / Batch ID:	24K20154
Lot ny Batemio.	211(20131

Sample Type:	Tincture
IL Unique ID:	ILCTS552

Sample Description: Clear tincture oil

Notes: Unit weight is 28 grams per 30mL bottle

Analyst Name: Enrique Orci IV

Analyst Signature: Wigue Orci IV

Reviewer Name:	Ted Barton
Reviewer Signature:	Ted Bart -

Cannabinoid Potency and Profile

Cannabinoid	Result (%)	Result (mg/g)	mg/bottle
CBDV	N/D	N/D	N/D
CBDVA	N/D	N/D	N/D
THCV	N/D	N/D	N/D
CBD	11.86%	118.63	3321.64
CBG	0.19%	1.86	52.08
CBDA	N/D	N/D	N/D
CBGA	N/D	N/D	N/D
CBN	0.43%	4.35	121.80
THCD9	N/D	N/D	N/D
THCD8	0.11%	1.12	31.36
CBC	0.58%	5.77	161.56
CBNA	0.42%	4.18	117.04
THCA	N/D	N/D	N/D
CBCA	N/D	N/D	N/D
Totals	13.59%	135.91	3805.48

Total THC %	0.00%
Total THC mg / bottle	0.00

Total CBD %	11.86%
Total CBD mg / bottle	3321.64

THC Total = % of THCD9 + (% of THCA x 0.877), CBD Total = % of CBD + (% of CBDA x 0.877), CBG Total = % of CBG + (% of CBGA x 0.876), CBN Total = % of CBN + (% of CBNA x 0.876), CBC Total = % of CBC + (% of CBCA x 0.877), CBDV Total = % of CBDV + (% of CBDVA x 0.867), N/D = Not Detected

** Bud/Flower potency results are presented on a dry weight basis

Testing results are based solely upon the samples submitted to Ionization Labs, LLC. Ionization Labs warrants that all analytical work is conducted in accordance with all applicable standard laboratory practices uisng validated methods. This report may not be reproduced without the written consent of Ionization Labs.

ISO 17025 Accredited
A2LA Certificate #: 5756.01
Texas Dept of Ag Account #: TL2020003

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020

ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Customer: Deschutes Labs

Product identity: 1060418-2020-TF-05-DIS-01

Client/Metrc ID:

Laboratory ID: 20-011819-0002 Sample Date: 10/28/20 09:47

Summary

Potency:

Analyte	Result (%)			
CBD	72.7		CBD-Total	72.7%
CBC	3.45	• CBD	t	
CBN	3.39	• CBC	THC-Total	0.211%
CBG [†]	1.33	• CBN		0.21170
CBDV [†]	0.540	CBGCBDV	(Reported in pe	ercent of total sample)
CBL [†]	0.265	• CBL	8 8 8	5 A
Δ9-THC	0.211	9-THC		

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Metals:

Less than LOQ for all analytes.

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Customer: Deschutes Labs

Product identity: 1060418-2020-TF-05-DIS-01

Client/Metrc ID:

Sample Date: 10/28/20 09:47 Laboratory ID: 20-011819-0002

Relinquished by: USPS Temp: 18.6 °C

Sample Results

Potency	Metho	d J AOA	C 2015	V98-6 (mod)	Batch: 2009201	Analyze: 11/3/20	10:46:00 PM
Analyte	As	Dry	LOQ	Notes		-	
	Received	weight					
CBC	3.45		0.0917				CBD
CBC-A [†]	< LOQ		0.0917				• CBC
CBC-Total [†]	3.45		0.172				CBN
CBD	72.7		0.917			No.	O CBG
CBD-A	< LOQ		0.0917				CBDV
CBD-Total	72.7		0.998				O CBL
CBDV [†]	0.540		0.0917				9-THC
CBDV-A [†]	< LOQ		0.0917				
CBDV-Total [†]	0.540		0.171				
CBG [†]	1.33		0.0917				
CBG-A [†]	< LOQ		0.0917				
CBG-Total	1.33		0.171				
CBL [↑]	0.265		0.0917				
CBN	3.39		0.0917				
Δ8-THC [†]	< LOQ		0.0917				
Δ9-THC	0.211		0.0917				
THC-A	< LOQ		0.0917				
THC-Total	0.211		0.172				
THCV [†]	< LOQ		0.0917				
THCV-A†	< LOQ		0.0917				
THCV-Total [†]	< LOQ		0.171				
Total Cannabinoids [†]	81.9						

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Solvents	Method	EPA502	21A			Units µg/g Batch 20	009095	Analyz	e 11/0	02/20	9:15 AM
Analyte	Result	Limits	LOQ	Status	Notes	Analyte	Result	Limits	LOQ	Status	Notes
1,4-Dioxane	< LOQ	380	100	pass		2-Butanol	< LOQ	5000	200	pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutane	< LOQ		200		
2-Methylpentane	< LOQ		30.0			2-Propanol (IPA)	< LOQ	5000	200	pass	
2,2-Dimethylbutane	< LOQ		30.0			2,2-Dimethylpropane	< LOQ		200		
2,3-Dimethylbutane	< LOQ		30.0			3-Methylpentane	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile	< LOQ	410	100	pass	
Benzene	< LOQ	2.00	1.00	pass		Butanes (sum)	< LOQ	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass		Ethyl acetate	< LOQ	5000	200	pass	
Ethyl benzene	< LOQ		200			Ethyl ether	< LOQ	5000	200	pass	
Ethylene glycol	< LOQ	620	200	pass		Ethylene oxide	< LOQ	50.0	30.0	pass	
Hexanes (sum)	< LOQ	290	150	pass		Isopropyl acetate	< LOQ	5000	200	pass	
Isopropylbenzene	< LOQ	70.0	30.0	pass		m,p-Xylene	< LOQ		200		
Methanol	< LOQ	3000	200	pass		Methylene chloride	< LOQ	600	200	pass	
Methylpropane	< LOQ		200			n-Butane	< LOQ		200		
n-Heptane	< LOQ	5000	200	pass		n-Hexane	< LOQ		30.0		
n-Pentane	< LOQ		200			o-Xylene	< LOQ		200		
Pentanes (sum)	< LOQ	5000	600	pass		Propane	< LOQ	5000	200	pass	
Tetrahydrofuran	< LOQ	720	100	pass		Toluene	< LOQ	890	100	pass	
Total Xylenes	< LOQ		400			Total Xylenes and Ethyl	< LOQ	2170	600	pass	

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Pesticides	Method	AOAC	2007.01 & EN	15662 (mod)	Units mg/kg	Batch 2009293	Analy	ze 11/06/20 12:15 PM
Analyte	Result	Limits	s LOQ Status	Notes	Analyte	Result	Limits	s LOQ Status Notes
Abamectin	< LOQ	0.50	0.250 pass		Acephate	< LOQ	0.40	0.250 pass
Acequinocyl	< LOQ	2.0	1.00 pass		Acetamiprid	< LOQ	0.20	0.100 pass
Aldicarb	< LOQ	0.40	0.200 pass		Azoxystrobin	< LOQ	0.20	0.100 pass
Bifenazate	< LOQ	0.20	0.100 pass		Bifenthrin	< LOQ	0.20	0.100 pass
Boscalid	< LOQ	0.40	0.200 pass		Carbaryl	< LOQ	0.20	0.100 pass
Carbofuran	< LOQ	0.20	0.100 pass		Chlorantranilipr	role < LOQ	0.20	0.100 pass
Chlorfenapyr	< LOQ	1.0	0.500 pass		Chlorpyrifos	< LOQ	0.20	0.100 pass
Clofentezine	< LOQ	0.20	0.100 pass		Cyfluthrin	< LOQ	1.0	0.500 pass
Cypermethrin	< LOQ	1.0	0.500 pass		Daminozide	< LOQ	1.0	0.500 pass
Diazinon	< LOQ	0.20	0.100 pass		Dichlorvos	< LOQ	1.0	0.500 pass
Dimethoate	< LOQ	0.20	0.100 pass		Ethoprophos	< LOQ	0.20	0.100 pass
Etofenprox	< LOQ	0.40	0.200 pass		Etoxazole	< LOQ	0.20	0.100 pass
Fenoxycarb	< LOQ	0.20	0.100 pass		Fenpyroximate	< LOQ	0.40	0.200 pass
Fipronil	< LOQ	0.40	0.200 pass		Flonicamid	< LOQ	1.0	0.400 pass
Fludioxonil	< LOQ	0.40	0.200 pass		Hexythiazox	< LOQ	1.0	0.400 pass
lmazalil	< LOQ	0.20	0.100 pass		Imidacloprid	< LOQ	0.40	0.200 pass
Kresoxim-methyl	< LOQ	0.40	0.200 pass		Malathion	< LOQ	0.20	0.100 pass
Metalaxyl	< LOQ	0.20	0.100 pass		Methiocarb	< LOQ	0.20	0.100 pass
Methomyl	< LOQ	0.40	0.200 pass		MGK-264	< LOQ	0.20	0.100 pass
Myclobutanil	< LOQ	0.20	0.100 pass		Naled	< LOQ	0.50	0.250 pass
Oxamyl	< LOQ	1.0	0.500 pass		Paclobutrazole	< LOQ	0.40	0.200 pass
Parathion-Methyl	< LOQ	0.20	0.200 pass		Permethrin	< LOQ	0.20	0.100 pass
Phosmet	< LOQ	0.20	0.100 pass		Piperonyl butox	kide < LOQ	2.0	1.00 pass
Prallethrin	< LOQ	0.20	0.200 pass		Propiconazole	< LOQ	0.40	0.200 pass
Propoxur	< LOQ	0.20	0.100 pass		Pyrethrin I (tota	al) < LOQ	1.0	0.500 pass
Pyridaben	< LOQ	0.20	0.100 pass		Spinosad	< LOQ	0.20	0.100 pass
Spiromesifen	< LOQ	0.20	0.100 pass		Spirotetramat	< LOQ	0.20	0.100 pass
Spiroxamine	< LOQ	0.40	0.200 pass		Tebuconazole	< LOQ	0.40	0.200 pass
Thiacloprid	< LOQ	0.20	0.100 pass		Thiamethoxam	< LOQ	0.20	0.100 pass
Trifloxystrobin	< LOQ	0.20	0.100 pass					

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Arsenic	< LOQ		mg/kg	0.0493	2009228	11/04/20	AOAC 2013.06 (mod.)	X
Cadmium	< LOQ		mg/kg	0.0493	2009228	11/04/20	AOAC 2013.06 (mod.)	X
Lead	< LOQ		mg/kg	0.0493	2009228	11/04/20	AOAC 2013.06 (mod.)	X
Mercury	< LOQ		mg/kg	0.0246	2009228	11/04/20	AOAC 2013.06 (mod.)	Χ

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020

ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

μg/g = Microgram per gram
 mg/kg = Milligram per kilogram = parts per million (ppm)
 % = Percentage of sample
 % wt = μg/g divided by 10,000

Glossary of Qualifiers

X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager

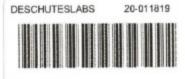
Report Number:

20-011819/D02.R00

Report Date:

11/06/2020 OR100028

ORELAP#: Purchase Order:


Received:

10/30/20 10:50

Hemp / Cannabis Usable / Extract **Chain of Custody Record**

Revision: 3.01 Control#: CF023 Rev 02/26/2020 Eff: 02/27/2020 ORELAP ID: OR100028

	Deschutes Labe					Analysis Requested									PO Number:								
Sti Cit	Company: Deschutes Labs Contact: Drew Van Roekel Street: 2020 NW Industrial Park Rd City: Prineville State: OR Zip: 97754 Email Results: Drew@Deschuteslabs.com Ph: () Fx Results: () Billing (if different):		s.com			es	Residual Solvents	Aetals							Cust Rep Turn	Project Project tom Re ort to	Number:ect Name:eporting: State M d time: _ S	IETRC or ☐ Other: Standard ☐ Rush * ☐ Priority Rush * *Ask for availability					
Lab ID	Client Sample Identification	Date	Time	Low potency	Potency	Pesticides	Residua	Heavy Metals							Sam	1000	Weight (Units)	Comments/Metrc ID					
		10/28/20		V	V	V	V	V						T	9	-	5g						
2	1660418-2020-TF-05-DIS-01	10/28/20	9:47		~	V	V	V						(С	•	59						
	1060418-2020-TF-04-TFD-XZ				V	V	V	V						-	С	-	59						
4	/ .	10/28/20 9:47	10 20-5H-64-CRO-01 10/28/20	4-CRO-01 10/28/20 9:1	8-20-5H-64-CRO-01 10/28/20		2020-5H-64-CRO-01 10/28/20 9:4-	9:47			V								-	c-		59	Per client email 10130-PG
		10/28/20			_	_				-	-	-	-	-	С	_							
		10/28/20								_	_	-	-	-	С	~		-					
		10/28/20								_	_	-	_		С	~		-					
		10/28/20								_	_	-	-	-	С			-					
		10/28/20								_	_	_	_	-	С	•							
		10/28/20									_	_	_	_	С	-							
		10/28/20												-	С	-							
1	Relinquished By: Date Time				NS E	Re	eceived	Ву:		933	Date		Tim				1/5	Lab Use Only:					
九	Seew Van Wehl	10/20/20	0948				JB				1030		1050-		Shipped Via: or _ Client drop								

Samples submitted to Columbia Laboratories with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the services associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to these terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to the service associated with this COC. By signing "Relinquished by" you are agreeing to the service associated with this COC. By signing "Relinquished by" you are agreeing to the service associated with the current terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to the service associated with the current terms of the service associated with the current terms of the service associated with this COC. By signing "Relinquished by" you are agreeing to the service associated with the current terms of the service associated with the service associated with the current terms of the service associated with the current terms of the service associated with the 12423 NE Whitaker Way Portland, OR 97230 P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020

ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Columbia Laboratories Sample Receipt Form

Revision: 1.01 Document Control; CF015 Revised: 02/28/2020 Effective: 02/28/2020

Job Number: 20-011819 Search Name	e:
Package/Cooler opened on (if different than received date/time) Date:	0(30 Time: 1050
Received By (Initials):	
Were custody seals on outside of the package/cooler? If YES, how many and where?	YES NO NA
Were signature and date correct?	YES NO NA
2) Were custody papers included in the package/cooler?	YES NO NA
3) Were custody papers properly filled out (ink, sign, date)?	VES NO NA
4) Did you sign custody papers in the appropriate place?	YES NO NA
5) How was the package/cooler delivered?	
UPS FEDEX USPS CLIENT COL	URIER OTHER:
Tracking Number (written in or copy of shipping label): 940	05 5036 9930 0109 517804
Was packing material used?	YES (NO) NA
Peanuts Bubble Wrap Foam Paper Other:	
7) Was sufficient ice used (if appropriate)? What kind?	YES NO NA
Blue Ice	
8) Were all sample containers sealed in separate plastic bags?	YES NO NA
9) Did all sample containers arrive in good condition?	YES NO NA
10) Were all sample container labels complete?	YES NO NA
11) Did all sample container labels and tags agree with the coc?	YES NO NA
12) Were correct sample containers used for the tests indicated?	VES NO NA
13) Were VOA vials checked for absence of air bubbles (note if found)?	YES NO NA
14) Was a sufficient amount of sample sent in each sample container?	YES NO NA
15) Temperature of the samples upon receipt (See SOP for proper temps	(s) <u> 8,6</u> °c
16) Sample location prior to login: R25 R39 R44 F44 Ambi	ient Shelf Cannabis Table Other:
Explain any discrepancies:	
Page Zof Z	

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Residual Solvents				1000		Ba	tch ID:	200909	5		
Method Blank					Laborator	y Control Sa	ample				
Analyte	Result	- 100	LOQ	Notes	Result	Spike	Units	% Rec	U	imits	Note
Propane	ND	<	200		504	595	H8/8	84.7	70	- 130	0
Isobutane	ND	<	200		665	761	нв/в	87.4	70	- 130	0
Butane	ND	<	200		677	761	HE/8	89.0	70	- 130	0
2,2-Dimethylpropane	ND	<	200		832	955	нв/в	87.1	70	- 130	0
Methanol	ND	<	200		1460	1610	H8/8	90.7	70	- 130	0
Ethylene Oxide	ND	<	30		51.2	58.3	нв/в	87.8	70	- 130	0
2-Methylbutane	ND	<	200		1560	1600	H8/8	97.5	70	- 130	0
Pentane	ND	<	200		1500	1610	нв/в	93.2	70	- 130	0
Ethanol	ND	<	200		1450	1610	H8/8	90.1	70	- 130	0
Ethyl Ether	ND	<	200		1520	1610	H8/8	94.4	70	- 130	0
2,2-Dimethylbutane	ND	<	30		155	168	HE/8	92.3	70	- 130	b .
Acetone	ND	<	200	9	1490	1610	HE/8	92.5	70	- 130	0
2-Propanol	ND	<	200		1450	1600	HE/E	90.6	70	- 130	b .
Ethyl Formate	ND	<	500		1570	1710	н в/в	91.8	70	- 130	0
Acetonitrile	ND	<	100		456	486	н в/в	93.8	70	- 130	
Methyl Acetate	ND	<	500		1550	1610	HE/8	96.3	70	- 130	0
2,3-Dimethylbutane	ND		30		127	162	HE/E	78.4	70	- 130	b .
Dichloromethane	ND	<	200	8	463	490	нв/в	94.5	70	- 130	0
2-Methylpentane	ND	<	30		146	164	HE/E	89.0	70	- 130	0
мтве	ND		500	ģ B	1560	1620	нв/в	96.3	70	- 130	0
3-Methylpentane	ND	<	30		149	166	ни/и	89.8	70	- 130	0
Hexane	ND		30	ģ B	147	167	ни/и	88.0	70	- 130	0
1-Propanol	ND	<	500		1480	1600	не/е	92.5	70	- 130	_
Methylethylketone	ND		500	6 8	1500	1610	ни/и	93.2	70	- 130	_
Ethyl acetate	ND	<	200		1430	1610	не/е	88.8	70	- 130	_
2-Butanol	ND		200	6 8	1400	1610	HE/E	87.0	70	- 130	_
Tetrahydrofuran	ND	<	100		436	484	не/е	90.1	70	- 130	_
Cyclohexane	ND	-	200	6 8	1460	1610	не/е	90.7	70	- 130	_
2-methyl-1-propanol	ND ND	<	500		1490	1610	HE/E	92.5	70	- 130	_
Benzene	ND	4	1		24.6	24.5	HE/E	100.4	70	- 130	_
Isopropyl Acetate	ND		200	8 0	1390	1620	HE/E	85.8	70	- 130	-
Heptane	ND ND	4	200		1440	1610	не/е	89.4	70	- 130	-
1-Butanol	ND ND		500	8 0	1480	1600	не/е	92.5	70	- 130	-
Propyl Acetate	ND ND	4	500		1470	1620	не/е	90.7	70	- 130	-
1.4-Dioxane	ND ND		100	8 0	440	484	не/е	90.9	70	- 130	+
2-Ethoxyethanol	ND ND	4	30		146	186	не/е	78.5	70	- 130	-
Methylisobutylketone	ND ND		500	8 0	1460	1610	не/е	90.7	70	- 130	+
3-Methyl-1-butanol	ND ND	4	500		1440	1610	не/е	89.4	70	- 130	-
Ethylene Glycol	ND ND	-	200	X 0	418	509	не/е	82.1	70	- 130	-
Toluene	ND ND	4	200	20	438	492	не/е	89.0	70	- 130	-
Isobutyl Acetate	ND ND	-	500		1440	1610	не/е	89.4	70	- 130	-
1-Pentanol	ND	4	500	20	1440	1620	на/а	88.9	70	- 130	+
Butyl Acetate	ND ND	1	500		1440	1610	HE/E	89.4	70	- 130	_
Ethylbenzene	ND ND	4	200		847	971		87.2	70	- 130	_
m.p-Xylene	ND ND	_	200		847	971	3/8H	87.2	70	- 130	_
		4	_	20			нв/в		$\boldsymbol{\vdash}$	_	_
o-Xylene	ND ND	<	200		882	966	нв/в элан	91.3	$\overline{}$	- 130	$\overline{}$
Cumene	ND ND	4	30	2	156	167	нв/в	93.4	70	- 130	_
Anisole	ND ND	<	500		1450	1610	нв/в о	90.1	70	- 130	_
DMSO	ND	<	500	2	1480	1650	HE/8	89.7	70	- 130	_
1,2-dimethoxyethane	ND	<	50	24	143	170	H8/8	84.1	70	- 130	_
Triethylamine	ND	<	500		1440	1610	HE/8	89.4	70	- 130	_
N,N-dimethylformamide	ND	<	150	24	449	490	9/84	91.6	70	- 130	_
N,N-dimethylacetamide	ND .	<	150		418	485	H8/8	86.2	70	- 130	· I

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Analyte	Parult	Org. Result	100	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND ND	200	HR/R	0.0	< 20	Acceptable	Notes
Isobutane	ND.	ND	200	HE/E	0.0	< 20	Acceptable	
Butane	ND ND	ND	200	HE/E	0.0	< 20	Acceptable	
2.2-Dimethylpropane	ND ND	ND ND	200	HE/E	0.0	< 20	Acceptable	
Methanol	ND	ND	200	HE/E	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	HE/E	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	HE/E	0.0	< 20	Acceptable	
Pentane	ND	ND	200	HE/E	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	не/е	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	нв/в	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	H8/8	0.0	< 20	Acceptable	
Acetone	ND	ND	200	нв/в	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	HR/E	0.0	< 20	Acceptable	
Ethyl Formate	ND	ND	500	HR/R	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	не/е	0.0	< 20	Acceptable	
Methyl Acetate	ND	ND	500	H8/8	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	HE/E	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	200	не/е	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	H8/8	0.0	< 20	Acceptable	
MTBE	ND	ND	500	H8/8	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	H8/8	0.0	< 20	Acceptable	
Hexane	ND	ND	30	H8/8	0.0	< 20	Acceptable	
1-Propanol	ND	ND	500	H6/6	0.0	< 20	Acceptable	
Methylethylketone	ND	ND	500	не/е	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	H8/8	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	HB/B	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	ня/я	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	нв/в	0.0	< 20	Acceptable	
2-methyl-1-propanol	ND	ND	500	H8/8	0.0	< 20	Acceptable	
Benzene	ND	ND	1	H8/8	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	нв/в	0.0	< 20	Acceptable	
Heptane	ND	ND	200	H8/8	0.0	< 20	Acceptable	
1-Butanol	ND	ND	500	не/е	0.0	< 20	Acceptable	
Propyl Acetate	ND	ND	500	не/е	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	не/е	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	не/е	0.0	< 20	Acceptable	
Methylisabutylketone	ND	ND	500	HE/E	0.0	< 20	Acceptable	
3-Methyl-1-butanol	ND.	ND ND	500	HE/E	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	не/е	0.0	< 20	Acceptable	
Toluene	ND	ND	200	H8/8	0.0	< 20	Acceptable	
Isobutyl Acetate	ND	ND	500	H6/6	0.0	< 20	Acceptable	
1-Pentanol	ND	ND	500	HR/E	0.0	< 20	Acceptable	
Butyl Acetate	ND	ND	500	не/е	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200	HR/R	0.0	< 20	Acceptable	
	ND ND	ND ND	200		0.0	< 20		
m,p-Xylene				H8/8			Acceptable	
o-Xylene	ND	ND	200	H8/8	0.0	< 20	Acceptable	
Cumene	ND	33.1	30	не/е	9.8	< 20	Acceptable	
Anisole	ND	ND	500	H6/6	0.0	< 20	Acceptable	
DMSO	ND	ND	500	HR/R	0.0	< 20	Acceptable	
1,2-dimethacyethane	ND	ND	50	HE/E	0.0	< 20	Acceptable	
	ND ND				0.0			
Triethylamine		ND	500	H8/8		< 20	Acceptable	
N,N-dimethylformamide	ND	ND	150	H8/8	0.0	< 20	Acceptable	
N,N-dimethylacetamide	ND	ND	150	HE/E	0.0	< 20	Acceptable	
Pyridine	ND	ND	50	не/е	0.0	< 20	Acceptable	

RPD - Relative Percent Difference LOQ - Limit of Quantitation

* Screening only

μg/g- Microgram per gram or ppm

mg/Kg - Milligrams per Kilogram Aw- Water Activity unit

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Analyte	Parult	Org. Result	100	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND ND	200	HR/R	0.0	< 20	Acceptable	Notes
Isobutane	ND.	ND	200	HE/E	0.0	< 20	Acceptable	
Butane	ND ND	ND	200	HE/E	0.0	< 20	Acceptable	
2.2-Dimethylpropane	ND ND	ND ND	200	HE/E	0.0	< 20	Acceptable	
Methanol	ND	ND	200	HE/E	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	HE/E	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	HE/E	0.0	< 20	Acceptable	
Pentane	ND	ND	200	HE/E	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	не/е	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	нв/в	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	H8/8	0.0	< 20	Acceptable	
Acetone	ND	ND	200	нв/в	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	HR/R	0.0	< 20	Acceptable	
Ethyl Formate	ND	ND	500	HR/R	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	не/е	0.0	< 20	Acceptable	
Methyl Acetate	ND	ND	500	H8/8	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	HE/E	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	200	не/е	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	H8/8	0.0	< 20	Acceptable	
MTBE	ND	ND	500	H8/8	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	H8/8	0.0	< 20	Acceptable	
Hexane	ND	ND	30	H8/8	0.0	< 20	Acceptable	
1-Propanol	ND	ND	500	H6/6	0.0	< 20	Acceptable	
Methylethylketone	ND	ND	500	не/е	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	H8/8	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	HB/B	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	ня/я	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	нв/в	0.0	< 20	Acceptable	
2-methyl-1-propanol	ND	ND	500	H8/8	0.0	< 20	Acceptable	
Benzene	ND	ND	1	H8/8	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	нв/в	0.0	< 20	Acceptable	
Heptane	ND	ND	200	H8/8	0.0	< 20	Acceptable	
1-Butanol	ND	ND	500	не/е	0.0	< 20	Acceptable	
Propyl Acetate	ND	ND	500	не/е	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	не/е	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	не/е	0.0	< 20	Acceptable	
Methylisabutylketone	ND	ND	500	HE/E	0.0	< 20	Acceptable	
3-Methyl-1-butanol	ND.	ND ND	500	HE/E	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	не/е	0.0	< 20	Acceptable	
Toluene	ND	ND	200	H8/8	0.0	< 20	Acceptable	
Isobutyl Acetate	ND	ND	500	H6/6	0.0	< 20	Acceptable	
1-Pentanol	ND	ND	500	HR/E	0.0	< 20	Acceptable	
Butyl Acetate	ND	ND	500	не/е	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200	HR/R	0.0	< 20	Acceptable	
	ND ND	ND ND	200		0.0	< 20		
m,p-Xylene				H8/8			Acceptable	
o-Xylene	ND	ND	200	H8/8	0.0	< 20	Acceptable	
Cumene	ND	33.1	30	не/е	9.8	< 20	Acceptable	
Anisole	ND	ND	500	H6/6	0.0	< 20	Acceptable	
DMSO	ND	ND	500	HR/R	0.0	< 20	Acceptable	
1,2-dimethacyethane	ND	ND	50	HE/E	0.0	< 20	Acceptable	
	ND ND				0.0			
Triethylamine		ND	500	H8/8		< 20	Acceptable	
N,N-dimethylformamide	ND	ND	150	H8/8	0.0	< 20	Acceptable	
N,N-dimethylacetamide	ND	ND	150	HE/E	0.0	< 20	Acceptable	
Pyridine	ND	ND	50	не/е	0.0	< 20	Acceptable	

RPD - Relative Percent Difference LOQ - Limit of Quantitation

* Screening only

μg/g- Microgram per gram or ppm

mg/Kg - Milligrams per Kilogram Aw- Water Activity unit

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015	V98-6				Bato	h ID: 2009201	l					
Sample Dupli	cate			Sample ID: 20-011819-0001								
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes				
CBDV-A	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
CBDV	0.317	0.334	0.1	%	5.37	< 20	Acceptable					
CBD-A	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
CBG-A	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
CBG	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
CBD	>98.0	>98.0	0.1	%	NA	< 20	Acceptable					
THCV	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
THCVA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
CBN	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
THC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
D8THC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
CBL	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
CBC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
THCA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					
CBCA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable					

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference

LOQ - Limit of Quantitation

NA - Calculation Not Applicable given non-numerical results

Units of Measure:

% - Percent

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 1566 Method Blank	2	Units	: mg/Kg	Laboratory Cont	roi sample	Ва	tch ID: 200929	3
Analyte	Blank Result	Blank Limits	Notes	LCS Result	LCS Spike	LCS % Rec	Limits	Notes
Acephate	0.010	< 0.200	1	0.987	1 1.000	98.7	72.4 - 126	1
Acequinocyl	0.040	< 1.000	1	3.987	4.000	99.7	79.8 - 122	
Acetamiprid	0.010	< 0.100	1 -	0.395	0.400	98.8	84.3 - 119	
Aldicarb	0.000	< 0.200	1	0.681	0.800	85.1	82.9 - 120	
Abamectin	0.003	< 0.288	1	0.999	1.000	99.9	79.6 - 124	
Azoxystrobin	0.009	< 0.100	1	0.406	0.400	101.5	79.4 - 127	
Bifenazate	0.004	< 0.100	1	0.412	0.400	102.9	81.6 - 124	
Bifenthrin	0.000	< 0.100	1	0.385	0.400	96.2	71.5 - 133	
Boscalid	0.000	< 0.100	1	0.716	0.800	89.5	74.0 - 131	
Carbaryl	0.000	< 0.100	 	0.379	0.400	94.6	82.1 - 121	
Carbofuran	0.007	< 0.100	1	0.392	0.400	97.9	85.1 - 125	
Chlorantraniliprol	0.000	< 0.100	1	0.406	0.400	101.5	70.6 - 131	
Chlorfenapyr	0.000	< 1.000	1	2.098	2.000	104.9	71.0 - 132	
Chlorpyrifos	0.000	< 0.100	1	0.387	0.400	96.8	72.3 - 134	
Clofentezine	0.000	< 0.100	1	0.369	0.400	92.2	80.1 - 117	
Cyfluthrin	0.000	< 1.000	1	2.052	2.000	102.6	71.8 - 133	
Cypermethrin	0.000	< 1.000	_	2.043	2.000	102.0	83.1 - 126	-
Daminozide	0.037	< 1.000		1.891	2.000	94.6	74.6 - 124	
Diazinon	0.004	< 0.100	1	0.370	0.400	92.5	78.9 - 126	
Dichlorvos	0.026	< 0.500		1.888	2.000	94.4	76.1 - 124	
Dimethoat	0.000	< 0.100		0.386	0.400	96.6	82.8 - 119	
Ethoprophos	0.000	< 0.100	1	0.388	0.400	96.9	69.5 - 129	
tofenprox	0.000	< 0.100	1	0.786	0.800	98.2		
Etoxazol	0.006	< 0.100	1	0.786	0.800	93.0	85.2 - 128 79.7 - 126	
			_		0.400	97.7		
enoxycarb	0.000	< 0.100	1	0.391			84.1 - 122	
enpyroximat	0.010	< 0.100	-	0.767	0.800	95.9	82.4 - 126	_
ipronil	0.000	< 0.100	1	0.688	0.800	86.0	80.6 - 125	
lonicamid	0.000	< 0.400	-	0.923	1.000	92.3	80.9 - 119	_
ludioxonil	0.000	< 0.100	1	0.776	0.800	97.0	73.0 - 136	
Hexythiazox	0.000	< 0.400	1	0.961	1.000	96.1	82.5 - 125	_
mazalil	0.000	< 0.100		0.395	0.400	98.7	81.4 - 128	
midacloprid	0.003	< 0.200	1	0.773	0.800	96.6	76.9 - 125	
(resoxim-Methyl	0.000	< 0.100		0.799	0.800	99.9	82.6 - 124	
Malathion	0.005	< 0.100		0.372	0.400	93.0	74.1 - 130	
Metalaxyl	0.000	< 0.100		0.394	0.400	98.5	79.7 - 124	
Methiocarb	0.008	< 0.100		0.370	0.400	92.6	81.0 - 123	
Methomyl	0.000	< 0.200		0.753	0.800	94.1	79.4 - 118	
MGK 264	0.000	< 0.100		0.399	0.400	99.7	77.2 - 128	
Myclobutanil	0.000	< 0.100	1	0.376	0.400	94.0	80.6 - 123	
Naled	0.000	< 0.200		0.876	1.000	87.6	80.3 - 126	
Oxamyl	0.000	< 0.400		1.823	2.000	91.1	80.1 - 117	
Paclobutrazol	0.000	< 0.200		0.765	0.800	95.6	81.6 - 126	
Parathion Methyl	0.000	< 0.200		0.788	0.800	98.5	72.5 - 135	
Permethrin	0.000	< 0.100	i	0.387	0.400	96.8	75.0 - 139	
Phosmet	0.002	< 0.100		0.395	0.400	98.7	82.0 - 122	
Piperonyl butoxide	0.041	< 1.000	i	1.906	2.000	95.3	81.3 - 137	
Prallethrin	0.029	< 0.200		0.378	0.400	94.4	81.3 - 127	
Propiconazole	0.010	< 0.200	1	0.803	0.800	100.3	84.7 - 121	
угорохиг	0.008	< 0.100		0.377	0.400	94.2	84.2 - 121	
yrethrins	0.001	< 0.500		0.401	0.413	97.1	76.1 - 141	
yridaben	0.000	< 0.100		0.448	0.400	112.1	79.2 - 147	
pinosad	0.000	< 0.100		0.381	0.388	98.3	88.4 - 127	
piromesifen	0.000	< 0.100		0.368	0.400	92.0	79.9 - 127	
pirotetramat	0.005	< 0.100		0.374	0.400	93.5	81.1 - 121	
piroxamine	0.011	< 0.100		0.787	0.800	98.4	78.4 - 133	
ebuconazol	0.000	< 0.200		0.786	0.800	98.3	83.1 - 122	
hiacloprid	0.000	< 0.100		0.398	0.400	99.5	84.3 - 120	
Thiamethoxam	0.000	< 0.100		0.386	0.400	96.6	80.1 - 121	
rifloxystrobin	0.004	< 0.100		0.380	0.400	95.0	81.4 - 125	

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662	mg/Kg	100		0. 00000	Bat	tch ID: 2009293	3			
Matrix Spike/Matrix Spike I	Suplicate Recov	eries					Sample ID:	20-011819-0	0001	
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit	MS % Rec	MSD % Rec	Limits	Notes
Acephate	0.006	1.002	1.026	1.000	2.4%	< 30	99.6%	102.0%	50 - 150	
Acequinocyl	0.000	4.061	4.039	4.000	0.5%	< 30	101.5%	101.0%	50 - 150	
Acetamiprid	0.011	0.383	0.389	0.400	1.8%	< 30	92.8%	94.5%	50 - 150	
Aldicarb	0.000	0.778	0.711	0.800	9.0%	< 30	97.2%	88.8%	50 - 150	
Abamectin	0.000	1.293	1.312	1.000	1.5%	< 30	129.3%	131.2%	50 - 150	
Azoxystrobin	0.007	0.425	0.473	0.400	10.9%	< 30	104.6%	116.6%	50 - 150	
Bifenazate	0.003	0.415	0.386	0.400	7.5%	< 30	103.1%	95.7%	50 - 150	
Bifenthrin	0.000	0.655	0.631	0.400	3.6%	< 30	163.6%	157.8%	50 - 150	Q1
Boscalid	0.000	0.765	0.759	0.800	0.8%	< 30	95.6%	94.8%	50 - 150	-
Carbaryl	0.000	0.388	0.386	0.400	0.4%	< 30	96.9%	96.5%	50 - 150	
Carbofuran	0.000	0.389	0.380	0.400	2.4%	< 30	97.2%	94.9%	50 - 150	
Chlorantraniliprol	0.000	0.403	0.418	0.400	3.7%	< 30	100.8%	104.6%	50 - 150	
Chlorfenapyr	0.000	2.236	2.075	2.000	7.4%	< 30	111.8%	103.8%	50 - 150	
Chlorpyrifos	0.000	0.179	0.182	0.400	1.6%	< 30	44.7%	45.4%	50 - 150	Q
Clofentezine	0.000	0.404	0.403	0.400	0.3%	< 30	101.1%	100.8%	50 - 150	4
Cyfluthrin	0.000	3.289	3.010	2.000	8.9%	< 30	164.4%	150.5%	30 - 150	Q1
Cypermethrin	0.000	2.227	2.532	2.000	12.8%	< 30	111.4%	126.6%	50 - 150	- dr
Daminozide	0.000	1.652	1.659	2.000	0.4%	< 30	80.8%	81.2%	30 - 150	
Diazinon	0.004	0.456	0.431	0.400	5.6%	< 30	113.1%	106.9%	50 - 150	
Dichlorvos	0.004	1.946	1.831	2.000	6.2%	< 30	96.2%	90.4%	50 - 150	
Dimethoat	0.023	0.383	0.388	0.400	1.0%	< 30	95.9%	96.9%		
							93.5%			
Ethoprophos	0.000	0.374	0.369	0.400	1.5%	< 30		92.2%	50 - 150	
Etofenprox	0.000	0.792	0.686	0.800	14.5%	< 30	99.1%	85.7%	50 - 150	
Etoxazol	0.001	0.406	0.436	0.400	7.1%	< 30	101.4%	108.9%	50 - 150	
Fenoxycarb	0.000	0.410	0.417	0.400	1.8%	< 30	102.5%	104.3%	50 - 150	
Fenpyroximat	0.000	0.867	0.821	0.800	5.4%	< 30	108.4%	102.7%	50 - 150	
Fipronil	0.000	1.079	1.035	0.800	4.1%	< 30	134.8%	129.4%	50 - 150	
Flonicamid	0.000	0.943	1.010	1.000	6.8%	< 30	94.3%	101.0%	50 - 150	
Fludioxonil	0.000	0.702	0.800	0.800	13.0%	< 30	87.7%	99.9%	50 - 150	
Hexythiazox	0.000	0.972	0.986	1.000	1.4%	< 30	97.2%	98.6%	50 - 150	
Imazalil	0.000	0.336	0.336	0.400	0.1%	< 30	84.0%	84.1%	50 - 150	
Imidacloprid	0.002	0.798	0.841	0.800	5.3%	< 30	99.4%	104.9%	50 - 150	
Kresoxim-Methyl	0.000	0.752	0.812	0.800	7.6%	< 30	94.0%	101.5%	50 - 150	
Malathion	0.002	0.431	0.432	0.400	0.1%	< 30	107.2%	107.4%	50 - 150	
Metalaxyl	0.000	0.387	0.394	0.400	1.8%	< 30	96.8%	98.6%	50 - 150	
Methiocarb	0.007	0.416	0.413	0.400	0.6%	< 30	102.2%	101.5%	50 - 150	
Methomyl	0.000	0.711	0.747	0.800	5.0%	< 30	88.8%	93.4%	50 - 150	
MGK 264	0.000	0.368	0.366	0.400	0.5%	< 30	91.9%	91.5%	50 - 150	
Myclobutanil	0.000	0.398	0.381	0.400	4.2%	< 30	99.4%	95.3%	50 - 150	
Naled	0.000	1.023	1.069	1.000	4.4%	< 30	102.3%	106.9%	50 - 150	
Oxamyl	0.000	1.716	2.019	2.000	16.2%	< 30	85.8%	100.9%	50 - 150	
Paclobutrazol	0.000	0.855	0.847	0.800	1.0%	< 30	106.9%	105.8%	50 - 150	
Parathion Methyl	0.000	0.957	0.835	0.800	13.6%	< 30	119.6%	104.4%	30 - 150	
Permethrin	0.000	0.431	0.400	0.400	7.5%	< 30	107.8%	100.0%	50 - 150	
Phosmet	0.002	0.367	0.368	0.400	0.3%	< 30	91.3%	91.6%	50 - 150	
Piperonyl butoxide	0.000	2.185	2.179	2.000	0.3%	< 30	109.3%	109.0%	50 - 150	
Prallethrin	0.031	0.532	0.544	0.400	2.4%	< 30	125.3%	128.3%	50 - 150	
Propiconazole	0.000	0.902	0.911	0.800	1.0%	< 30	112.7%	113.9%	50 - 150	
Propoxur	0.006	0.389	0.375	0.400	3.7%	< 30	95.8%	92.3%	50 - 150	
Pyrethrins	0.005	0.521	0.570	0.413	9.1%	< 30	124.9%	136.8%	50 - 150	
Pyridaben	0.000	0.349	0.379	0.400	8.2%	< 30	87.3%	94.8%	50 - 150	
Spinosad	0.003	0.333	0.346	0.388	3.6%	< 30	85.1%	88.3%	50 - 150	
Spiromesifen	0.000	0.389	0.417	0.400	7.0%	< 30	97.2%	104.3%	50 - 150	
Spirotetramat	0.000	0.368	0.388	0.400	5.5%	< 30	91.9%	97.0%	50 - 150	
Spiroxamine	0.010	0.721	0.771	0.800	6.9%	< 30	88.9%	95.2%	50 - 150	
Tebuconazol	0.000	0.721	0.771	0.800	1.5%	< 30	118.8%	120.6%	50 - 150	
	0.000	0.950	0.374	0.400	6.5%		99.7%	93.5%		
Thiacloprid	200.000					< 30			50 - 150	
Thiamethoxam	0.000	0.369	0.403	0.400	8.8%	< 30	92.4%	100.9%	50 - 150	
Trifloxystrobin	0.003	0.411	0.414	0.400	0.8%	< 30	101.9%	102.8%	50 - 150	

Report Number: 20-011819/D02.R00

Report Date: 11/06/2020 ORELAP#: OR100028

Purchase Order:

Received: 10/30/20 10:50

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.